Efficient Simulation of Markov Chains using Segmentation

نویسندگان

  • Tim Brereton
  • Ole Stenzel
  • Björn Baumeier
  • Denis Andrienko
  • Volker Schmidt
  • Dirk Kroese
چکیده

A methodology is proposed that is suitable for efficient simulation of continuous-time Markov chains that are nearly-completely decomposable. For such Markov chains the effort to adequately explore the state space via Crude Monte Carlo (CMC) simulation can be extremely large. The purpose of this paper is to provide a fast alternative to the standard CMC algorithm, which we call Aggregate Monte Carlo (AMC). The idea of the AMC algorithm is to reduce the jumping back and forth of the Markov chain in small subregions of the state space. We accomplish this by aggregating such problem regions into single states. We discuss two methods to identify collections of states where the Markov chain may become ‘trapped’: the stochastic watershed segmentation from image analysis, and a graph-theoretic decomposition method. As a motivating application, we consider the problem of estimating the charge carrier mobility of disordered organic semiconductors, which contain low-energy regions in which the charge carrier can quickly become stuck. It is shown that the AMC estimator for the charge carrier mobility reduces computational costs by several orders of magnitude compared to the CMC estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Estimation of the Entropy Rate of ErgodicMarkov Chains

In this paper an approximation for entropy rate of an ergodic Markov chain via sample path simulation is calculated. Although there is an explicit form of the entropy rate here, the exact computational method is laborious to apply. It is demonstrated that the estimated entropy rate of Markov chain via sample path not only converges to the correct entropy rate but also does it exponential...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

Unsupervised Non Stationary Image Segmentation Using Triplet Markov Chains

This work deals with the unsupervised Bayesian hidden Markov chain restoration extended to the non stationary case. Unsupervised restoration based on “ExpectationMaximization” (EM) or “Stochastic EM” (SEM) estimates considering the “Hidden Markov Chain” (HMC) model is quite efficient when the hidden chain is stationary. However, when the latter is not stationary, the unsupervised restoration re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012